Accurate energies of hydrogen bonded nucleic acid base pairs and triplets in tRNA tertiary interactions

نویسندگان

  • Romina Oliva
  • Luigi Cavallo
  • Anna Tramontano
چکیده

Tertiary interactions are crucial in maintaining the tRNA structure and functionality. We used a combined sequence analysis and quantum mechanics approach to calculate accurate energies of the most frequent tRNA tertiary base pairing interactions. Our analysis indicates that six out of the nine classical tertiary interactions are held in place mainly by H-bonds between the bases. In the remaining three cases other effects have to be considered. Tertiary base pairing interaction energies range from -8 to -38 kcal/mol in yeast tRNA(Phe) and are estimated to contribute roughly 25% of the overall tRNA base pairing interaction energy. Six analyzed posttranslational chemical modifications were shown to have minor effect on the geometry of the tertiary interactions. Modifications that introduce a positive charge strongly stabilize the corresponding tertiary interactions. Non-additive effects contribute to the stability of base triplets.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Accurate interaction energies of hydrogen-bonded nucleic acid base pairs.

Hydrogen-bonded nucleic acids base pairs substantially contribute to the structure and stability of nucleic acids. The study presents reference ab initio structures and interaction energies of selected base pairs with binding energies ranging from -5 to -47 kcal/mol. The molecular structures are obtained using the RI-MP2 (resolution of identity MP2) method with extended cc-pVTZ basis set of ato...

متن کامل

Consistent Relative Thermodynamic Data for Hydrogen Bonding and Stacking Interactions of Nucleic Acid Base Derivatives

An ab initio method is used in a two state model to calculate consistent relative enthalpies and free energies for the stacking of nucleic acid bases in deoxyribose dinucleotides and the Watson-Crick hydrogen bonding interactions between mononucleotides when uncharged and singly charged. Favorable free energy changes are determined for the formation of dimers between mononucleotides by Watson-C...

متن کامل

The effect of some mono and bivalent metal cations on the individual hydrogen bond energies in A−T and G−C base pairs

The effect of interactions of various Ia and IIa cations with two positions of the adenine-thymine (A−T) and guanine-cytosine (G−C) base pairs on the geometries and individual hydrogen bond (HB) energies have been investigated by using the atoms in molecules (AIM) method at the B3LYP/6-311++G(d,p) level of theory. The cations that possess higher charge/radius (q/rad) ratio make higher changes o...

متن کامل

Investigation of Substituent Effects on the Strength of Hydrogen Bond in the Guanine: Cytosine Base Pairs: A Theoretical Study

In the present work, the substituent effect on the strength of H-bonds in the guanine – cytosine base pair was studied when the substituents are connected to the guanine base through a phenyl ring. In this study, guanine was substituted in the H8 and H9 positions by electron donating (ED) and electron withdrawing (EW) groups mediated by a phenyl ring in the gas phase. The calculations were perf...

متن کامل

Ab initio interaction energies of hydrogen-bonded amino acid side chain[bond]nucleic acid base interactions.

Hydrogen-bonding interactions often make substantial contributions to the specificity of protein-nucleic acid complexes. Using a geometric modeling approach, we previously identified 28 possible doubly hydrogen-bonded interactions to the four unpaired RNA bases. Here we present interaction energies of these models, calculated by ab initio quantum chemical methods, and describe a correlation bet...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nucleic Acids Research

دوره 34  شماره 

صفحات  -

تاریخ انتشار 2006